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Controlling simple dynamics by a disagreement function
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Institute of Theoretical Physics, University of Wrocław, place Maxa Borna 9, 50-204 Wrocław, Poland

~Received 5 June 2002; published 24 October 2002!

We introduce a formula for the disagreement function which is used to control a recently proposed dynamics
of the Ising spin system. This leads to four different phases of the Ising spin chain at zero temperature. One of
these phases is doubly degenerated~antiferromagnetic and ferromagnetic states are equally probable!. On the
borders between the phases two types of transitions are observed: infinite degeneration and instability lines.
The relaxation of the system depends strongly on the phase.
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I. INTRODUCTION

The Ising spin system is one of the most frequently u
models of statistical mechanics. Its simplicity~binary vari-
ables! makes it appealing to researchers from other branc
of science including biology@1#, sociology@2#, and economy
@3,4#. In sociophysics models of opinion formation based
the social impact theory~reviewed in @5#!, the individual
opinion is described by the Ising spin. This corresponds
only to typical ‘‘yes’’-‘‘no’’ questions, but also to importan
issues where the distribution of opinion seems to be bimo
peaked on extreme values. In general, in these models
influence flows inward from the border to the center, like
the majority rules, where the site in the middle takes the s
of the majority of neighboring sites. In contrast, in USDF~an
abbreviation from the sociological rule ‘‘United we stan
divided we fall’’! model @6# an outward flow of influence is
imposed. In the USDF model, an isolated person does
convince others; however, a group of people sharing
same opinion influences their neighbors. In spite of sim
rules the model exhibited complicated dynamics in one@6#
and more dimensions~reviewed in@7#!. In less than a year
this model has found several applications: e.g., it was use
explain the distribution of votes among candidates in Bra
ian local election@8# and to model the price dynamics o
financial instruments@9#.

In this paper we introduce the‘‘disagreement function’’
@3# which is used to control the dynamics of the model. W
show that for a one-dimensional Ising spin chain at z
temperature this leads to four different phases: ferrom
netic, antiferromagnetic,~2,2! antiphase, and a doubly de
generated phase in which both the ferromagnet and ant
romagnet phases are equally probable stable steady sta
the system. Apart from structural differences between pha
the difference in relaxation will be shown. The system
general will relax in two different ways depending on t
phase. Moreover, a sharp change of the relaxation time
borders of the phases will be observed.

II. THE MODEL

Recently a simple model for opinion evolution in a clos
community was proposed@6#. In this model the community
is represented by a horizontal chain of Ising spins, which
either up or down. A pair of parallel neighbors forces its tw
1063-651X/2002/66~4!/046131~5!/$20.00 66 0461
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neighbors to have the same orientation~in random sequentia
updating!, while for an antiparallel pair, the left neighbo
takes the orientation of the right part of the pair, and the
neighbor follows the right part of the pair. Thus the mod
can be described by two simple dynamic rules:

~i! D1 : Si 21(t11)5Si(t) and Si 12(t11)5Si(t) if
Si(t)* Si 11(t)51.

~ii ! D2 : Si 21(t11)5Si 11(t) and Si 12(t11)5Si(t) if
Si(t)* Si 11(t)521.

In contrast to the usual majority rules@10#, in this model
the influence does not flow inward from the surroundi
neighbors to the center site, but spreads outward from
center to the neighbors. The model thus describes the sp
of opinions. The dynamic rules lead to two different stab
steady states~ferromagnetic and antiferromagnetic! with
equal probability. The second dynamic rule (D2) of the
model has been already changed in two different ways. In
case of antiparallel spins the neighboring spins can either
with probability 1/2 @9# (D2A) or remain unchanged@7#
(D2B). In both cases (D2A and D2B) the only final state is
ferromagnet. It is worth mentioning that the ferromagne
state for both rules,D2A andD2B , is always reached~even in
two dimensions! in contrast to the Ising spin system und
Glauber dynamics@11,12#. In the case ofD2B besides of
ferromagnetic stable steady states, the antiferromagnetic
stable steady state exists.

Since we have up till now three different rules for the ca
of antiparallel spins, we propose a generalization of the p
vious models. The generalized model consists of two co
ponents~TC! hence the name TC model.

~i! The dynamics: choose a pair of spinsSi 11 and Si 12
and change its next nearest neighborsSi andSi 13.

~ii ! The rules: control the dynamics of thei th and (i
13)th spins by the disagreement function.

In the following sections we introduce the disagreem
function and show that the TC model includes as spe
cases all earlier proposed models@6,7,9#. Moreover, the TC
model consists of more than those three subcases which
present on its phase diagram. Using Monte Carlo simulati
we show how the system described by the TC model rela

III. HOW TO CONTROL DYNAMICS?

Let us assume for a while that we have the formula fo
function that can control TC dynamics and denote it byE.
©2002 The American Physical Society31-1
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We choose at random a pair of spinsSi 11 andSi 12 and we
calculate E15E(Si ,Si 11 ,Si 12). Next we calculateE2

5E(2Si ,Si 11 ,Si 12) in the case of flippedi th spin. If E2

,E1 then we will flip the i th spin; if not, the spin will
remain unchanged. We do the same for the second neig
of the chosen pair, i.e., for the spinSi 13.

Our dynamics looks now similar to the Glauber dynam
in zero temperature, whereE plays the role of energy. How
ever, there are three main differences between these two
namics.

~i! In the Glauber dynamics we flip thei th spin according
to the interactions with the (i 21)th and (i 11)th spins; here
we look at the (i 11)th and (i 12)th spins.

~ii ! In the Glauber dynamics the flip can be done even
the old energy is equal to the new one. In my opinion fl
ping a spin without any loss of the energy atT50 is not very
natural, but is needed to get the ground state~in two dimen-
sions even this is not enough@12#!.

~iii ! In our case,E is called the disagreement functio
since it is not the energy. On the contrary, the Glauber
namics deals with the real energy~i.e., the sum of interac-
tions with all neighbors!.

Now we will look for the formula forE. We shall deal
with the lattice model where each lattice sitei is occupied by
an Ising spinSi561. Usually, the spins are assumed
interact through pairwise coupling of the form2Ji j SiSj ,
whereJi j are exchange integrals. Of course, the ordering
the spins is determined by the interactions. One of the b
studied examples is the nearest neighbor~NN! Ising model
with ferromagnetic coupling, i.e.,Ji j 5J.0 for neighbor
spinsSi and Sj , while Ji j 50 for more distant spins. Cer
tainly, in a such model, the spins form the ferromagne
state~all spins up or all spins down! at the ground state. Fo
J,0 the antiferromagnetic state is formed atT50.

In the TC model thei th spin interacts with its two neigh
bors, and the one-dimensional~1D! Hamiltonian can be writ-
ten in the following form:

H52J1(
i

SiSi 112J2(
i

SiSi 12 . ~1!

For J1.0 andJ2,0 this is the well known ANNNI~axial
next-nearest-neighbor Ising! model introduced in@13# and
reviewed in@14#. It describes the Ising spin chain with fe
romagnetic interactionJ1.0 between nearest neighbo
~NN! and antiferromagnetic interactions between next ne
est neighbors~NNN!. Of course, in the one-dimensional ca
truly ordered states are stable only at zero temperaturT
50. If we introduce the competition ratior 52J2 /J1 we get
in T50 ferromagnetic state forr ,1/2 and~2,2! structure for
r .1/2. Interestingly, for allr ,0, the equilibrium ground
state cannot be reached via single spin-flip Glauber dynam
@15#. In contrary in TC model single spin-flip is sufficient t
get the ground steady state.

Now, we will use the NNN Ising Hamiltonian@1# to con-
struct the disagreement functionE. Chowdbury and Stauffe
introduced similarly a disagreement function based on
simple NN Ising hamiltonian to the model of financial ma
ket @3#. We writeE in the following form:
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E52J1SiSi 112J2SiSi 12 . ~2!

Each individual would like to minimize the correspondin
disagreement function. In the TC dynamics we choose a
Si 11 and Si 12 and we change its neighborSi ~we also
change Si 13 spin calculating E52J1Si 13Si 12
2J2Si 13Si 11, but for simplicity we further write only abou
the i th spin!. For these three spins (Si ,Si 11 ,Si 12) we have
four values ofE:

~1! 111 or 222 givesE152(J11J2).
~2! 211 or 122 givesE25J22J1.
~3! 121 or 212 givesE35J12J2.
~4! 221 or 112 givesE45J11J2.
It is worth noticing that the possible transitions are on

between states 1 and 2 or between 3 and 4. Now we
derive from the TC model all previous models.

~a! We have the USDF model@6# if Si 11(t)* Si 12(t)51
then Si(t11)5Si 11(t), i.e., E1,E2 if Si 11(t)* Si 12(t)5
21 thenSi(t11)5Si 12(t), i.e., E3,E4. Thus the USDF
model corresponds to the TC model with2J2,J1,J2.

~b! We have the model of the financial market@9# if
Si 11(t)* Si 12(t)51 then Si(t11)5Si 11(t) if
Si 11(t)* Si 12(t)521 then Si(t11)52Si(t) with prob-
ability 1/2. This corresponds to the TC model withE1,E2
andE4,E3 ⇒2J2,J1 andJ1.J2.

~c! Other models reviewed in@7# are as follows: if
Si 11(t)* Si 12(t)51 thenSi(t11)5Si 11(t), i.e., E1,E2 if
Si 11(t)* Si 12(t)521 then Si(t11)5Si(t), i.e., E35E4.
These models correspond to the TC model withJ15J2.

There are of course more subcases of the TC model
pending on the interaction coefficientsJ1 and J2. In Fig. 1
all possible phases, depending on the interaction coefficie
are presented. The North~doubly degenerated! phase corre-
sponds to the original ruleD2. The East~ferromagnetic!
phase corresponds to ruleD2A ~the flip in case of antiparalle
spins is made at random!. The line between these two phas
corresponds to ruleD2B ~the flip is possible only in the cas
of parallel spins!. On this line the antiferromagnetic stead
state still exists but it becomes unstable and we never rea
outside of this state. It is also interesting to see what happ
on other border lines.

FIG. 1. The phase diagram of the TC model.
1-2
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The border between the ferromagnetic state and the~2,2!
antiphase~see Fig. 2! is infinitely degenerated. Let us defin
~after @14#! a k band formed byk adjacent, identically ori-
ented spins, terminated at the both ends by opposite orie
spins. With such a definition, the ferromagnetic structure
zero-band structure, the antiferromagnetic phase is a
band structure and the~2,2! antiphase is a two-band struc
ture. On the line between the ferromagnet and~2,2! antiphase
any sequence ofk band (k>2) is equally probable~see Fig.
2!. The line between the~2,2! antiphase and the antiferro
magnet is also degenerated, and any sequence ofk band
~with k51,2) is the steady state~see Fig. 2!.

There is also another interesting feature which diff
phases from each other—the time and the style in which
system relaxes. We will describe it in the next section.

IV. HOW DOES THE SYSTEM RELAX?

What happens when we suddenly cool our system fro
high temperature to zero temperature? As we mentioned
viously the system will relax to one of the possible fin
states described by the phase diagram~Fig. 1!. But how does
it relax? We studied this using Monte Carlo simulations. W
found out that the relaxation process strongly depends on
phase. The system can reach antiferromagnetic state in
West ~antiferromagnetic! phase as well as in the North~de-
generated! phase. However, it will relax to this state diffe
ently in each case. In the antiferromagnetic phase@Fig. 3~c!#
the system will be almost totally ordered after several Mo
Carlo Steps~MCS!. Then the system will oscillate around th
final state. These oscillations will decrease in time and fina
the system will reach the steady state. In the degener
phase@Fig. 3~a!# the system will order very slowly.

In Fig. 3 the examples of relaxations in all four phases
presented. To show this relaxation we choose the opin
changes, since the model was proposed to investigate
opinion dynamics. We defined the opinion@6# as a magneti-
zation of the system:

m5(
i 51

N

Si . ~3!

FIG. 2. Examples of three different steady states of the
model are presented. Bright lines denote spins up and dark
denote spins down.
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For such a choice the system will relax toumu51 ~ferromag-
net! or umu50 @antiferromagnet or~2,2! antiphase#. Of
course, one could also choose the two point correlation fu
tion g5^SiSi 11& to see how the system relaxes. We ha
done it to recognize the final state (g51,21 or 0 for the
ferromagnet phase, antiferromagnet phase and the~2,2! an-
tiphase, respectively!. For J1.2J2 ~North and East parts o
the diagram in Fig. 1! the ordering of the system is ver
slow. Sometimes the opinion can change dramaticaly i
short time~see Fig. 3!. The long time trends are observe
which reminds us very much of the real sociological proc
@6#. For J1,2J2 the system is almost ordered after seve
Monte Carlo steps; however, then it takes a long time
reach the real final steady state. The opinion is fluctuat
around zero and these fluctuations are decreasing in time~see
Fig. 3!. Although the way in which the system relaxes in t
North and East phases is the same, the relaxation tim
each of these phases is different. About a two times sho
~on average! time is needed to reach the final state in t
degenerated phase. The relaxation time changes very sh
on the border between these two phases~Fig. 4!. A similar
effect is observed also on the border between the antife
magnetic and degenerated phases.

Let us now understand more deeply the relaxation of
system. We first focus on the case withJ1P(J2 ,2J2), for
which the~2,2! antiphase is the ground state~the South part
of the phase diagram in Fig. 1!, as this case leads to a
interesting dynamics. We will follow the way in which it wa
done for the one-dimensional ANNNI model under Glaub
dynamics@15#. Starting for simplicity from an initial ferro-
magnetically ordered up state, this system evolves to
state@ . . . 1122112211 . . . #. In the TC model we
choose a pair of spins at random and we try to flip its nei
bors. The disagreement function decreases byDE54(J1
1J2) when two NN spins flip to create two isolated dow
spins. The sameE loss arises for any nucleation event whic

es

FIG. 3. Examples of the relaxation for 1000 spins system
presented. Two kinds of relaxations were observed depending
interaction coefficients. ForJ1.2J2 the system makes a lon
‘‘random’’ walk to the final state, while forJ1,2J2 the system
makes decreasing oscillations around the final state.
1-3
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occurs within the domain of length>4. After this nucle-
ation, the single spin domain can grow to length 2, decre
ing the disagreement function byDE52(J22J1),

1111111111

⇓

1112112111

⇓

1112112211

⇓

1122112211.

At the end of this nucleation stage, the system consist
ordered~2,2!-antiphase regions as well as domains of size
3, and 4. These remaining domains now undergo a sequ
of reactions which lead the system to the ground st
1-domains and 3-domains diffuse freely within a sea
2-domains, analogously like in the one-dimensional ANN
model under the Glauber dynamics@15#. Interestingly, the
4-domain behaves more complicated for the TC model t
for the ANNNI model with Glauber dynamics. In the latte
case 4-domain splits into two 3-domains,

4→313

22112222112211

⇓

22112221112211.

On the other hand, a 4-domain will form when tw
3-domains collide.

In the case of the TC model there are two possibilities

FIG. 4. Relaxation time forJ251. In this figure we presen
results for the system of 1000 spins averaged over 10 000 sam
04613
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4→313

22112222112211

⇓
22112221112211

or

4→111

22112222112211

⇓

22112122112211.

These 1- and 3-domains can create again a 4-domai
diffuse freely in the system. Now we can ask what is t
process which leads finally to the ground state. Imagine
a 1-domain meets a 3-domain. They annihilate to form
stable 2-domain, like in the case of the ANNNI model und
Glauber dynamics@15#:

113→0

112212221122

⇓

112211221122.

Since each of the described processes leads to a lossE,
they each occur at the same rate whenT50. Thus, while the
nucleation process, which leads to an almost ordered sta
very fast in the TC model, the second step which leads to
final state is rather slow. The magnetization is almost z
after the first nucleation step~which takes several MCS!. In
the second step it oscillates because of diffusive domains
decreases due to annihilation processes.

Now we look quickly at the case of the ferromagne
state~the East part of the phase diagram in Fig. 1!. In this
case, in the first step small domains are created and then
grow slowly. The reaction is possible only when the p
which changes its neighbors~underlined! touches a wall of a
domain:

111222221111

⇓

111222222111.

If we choose a pair inside the domain~and not touching
the wall of this domain! or on the border between domain
nothing will happen, thus the relaxation is slow. Doma
walls follow a random walk resulting the process with lon
up and down trends~see Fig. 3!.

In the case of double degeneration~the North part of the
phase diagram, Fig. 1! the relaxation is similar but faster. In

es.
1-4
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this case reaction takes place not only in the neighborhoo
domain walls~in this case a local ferromagnet is created!, but
also on the border between domains~in this case a loca
antiferromagnet is created!:

111222221111

⇓
111222121211.

If d denotes the number of domains then for the ferrom
netic case there are 2d points where the reaction can tak
place and for the degenerated phase there are 3d reaction
points. Apart from more reaction points there is another r
son for which relaxation is slower in the ferromagne
phase. In this case for each chosen pair we change at
one spin. In the degenerated phase we can change two
if the chosen pair is on the border of domains~look at the
above example!. This explains the difference between rela
ation times in both phases shown in Fig. 4.

V. SUMMARY

We proposed a new generalized model of opinion form
tion. The disagreement function was introduced to con
,
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the simple dynamics of an Ising spin chain at zero tempe
ture. This allowed us to generalize the previous model
opinion dynamics. It was shown that the phase diagram
that system described by such a model consists of four
ferent phases. The most interesting is the existence of
doubly degenerated phase in which the system can reach
antiferromagnetic steady state or the ferromagnetic ste
state with the same probability. Moreover, it was shown t
the system can relax in two different ways depending on
interaction coefficients. Surprisingly the system can rea
the antiferromagnetic state in two different ways. In the a
tiferromagnetic phase the system will be almost ordered a
several Monte Carlo steps and then decreasing oscillat
around the final state will lead the system into this state
the degenerated phase, the system will behave ‘‘blind
making a long ‘‘random’’ walk to the final state. It would
probably be worth looking at the system described by suc
model in higher dimensions and higher temperature. We a
hope that the generalized TC model will find as many ap
cations as its older brothers@6#.
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